orthogonal_mp#
- sklearn.linear_model.orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False)[source]#
- Orthogonal Matching Pursuit (OMP). - Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: - When parametrized by the number of non-zero coefficients using - n_nonzero_coefs: argmin ||y - Xgamma||^2 subject to ||gamma||_0 <= n_{nonzero coefs}- When parametrized by error using the parameter - tol: argmin ||gamma||_0 subject to ||y - Xgamma||^2 <= tol- Read more in the User Guide. - Parameters:
- Xarray-like of shape (n_samples, n_features)
- Input data. Columns are assumed to have unit norm. 
- yndarray of shape (n_samples,) or (n_samples, n_targets)
- Input targets. 
- n_nonzero_coefsint, default=None
- Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. 
- tolfloat, default=None
- Maximum squared norm of the residual. If not None, overrides n_nonzero_coefs. 
- precompute‘auto’ or bool, default=False
- Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. 
- copy_Xbool, default=True
- Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. 
- return_pathbool, default=False
- Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. 
- return_n_iterbool, default=False
- Whether or not to return the number of iterations. 
 
- Returns:
- coefndarray of shape (n_features,) or (n_features, n_targets)
- Coefficients of the OMP solution. If - return_path=True, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis generates coefficients in increasing order of active features.
- n_itersarray-like or int
- Number of active features across every target. Returned only if - return_n_iteris set to True.
 
 - See also - OrthogonalMatchingPursuit
- Orthogonal Matching Pursuit model. 
- orthogonal_mp_gram
- Solve OMP problems using Gram matrix and the product X.T * y. 
- lars_path
- Compute Least Angle Regression or Lasso path using LARS algorithm. 
- sklearn.decomposition.sparse_encode
- Sparse coding. 
 - Notes - Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (https://www.di.ens.fr/~mallat/papiers/MallatPursuit93.pdf) - This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf - Examples - >>> from sklearn.datasets import make_regression >>> from sklearn.linear_model import orthogonal_mp >>> X, y = make_regression(noise=4, random_state=0) >>> coef = orthogonal_mp(X, y) >>> coef.shape (100,) >>> X[:1,] @ coef array([-78.68...]) 
