inplace_csr_row_normalize_l2#
- sklearn.utils.sparsefuncs_fast.inplace_csr_row_normalize_l2(X)#
Normalize inplace the rows of a CSR matrix or array by their L2 norm.
- Parameters:
- Xscipy.sparse.csr_matrix, shape=(n_samples, n_features)
The input matrix or array to be modified inplace.
Examples
>>> from scipy.sparse import csr_matrix >>> from sklearn.utils.sparsefuncs_fast import inplace_csr_row_normalize_l2 >>> X = csr_matrix(([1.0, 2.0, 3.0], [0, 2, 3], [0, 3, 4]), shape=(3, 4)) >>> X.toarray() array([[1., 2., 0., 0.], [0., 0., 3., 0.], [0., 0., 0., 4.]]) >>> inplace_csr_row_normalize_l2(X) >>> X.toarray() array([[0.44... , 0.89... , 0. , 0. ], [0. , 0. , 1. , 0. ], [0. , 0. , 0. , 1. ]])