parametrize_with_checks#
- sklearn.utils.estimator_checks.parametrize_with_checks(estimators)[source]#
- Pytest specific decorator for parametrizing estimator checks. - The - idof each check is set to be a pprint version of the estimator and the name of the check with its keyword arguments. This allows to use- pytest -kto specify which tests to run:- pytest test_check_estimators.py -k check_estimators_fit_returns_self - Parameters:
- estimatorslist of estimators instances
- Estimators to generated checks for. - Changed in version 0.24: Passing a class was deprecated in version 0.23, and support for classes was removed in 0.24. Pass an instance instead. - Added in version 0.24. 
 
- Returns:
- decoratorpytest.mark.parametrize
 
- decorator
 - See also - check_estimator
- Check if estimator adheres to scikit-learn conventions. 
 - Examples - >>> from sklearn.utils.estimator_checks import parametrize_with_checks >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.tree import DecisionTreeRegressor - >>> @parametrize_with_checks([LogisticRegression(), ... DecisionTreeRegressor()]) ... def test_sklearn_compatible_estimator(estimator, check): ... check(estimator) 
 
    
  
  
