Plot multinomial and One-vs-Rest Logistic Regression#
Plot decision surface of multinomial and One-vs-Rest Logistic Regression. The hyperplanes corresponding to the three One-vs-Rest (OVR) classifiers are represented by the dashed lines.
training score : 0.995 (multinomial)
/home/circleci/project/examples/linear_model/plot_logistic_multinomial.py:49: UserWarning:
No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
training score : 0.976 (ovr)
/home/circleci/project/examples/linear_model/plot_logistic_multinomial.py:49: UserWarning:
No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
# Authors: Tom Dupre la Tour <tom.dupre-la-tour@m4x.org>
# License: BSD 3 clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
# make 3-class dataset for classification
centers = [[-5, 0], [0, 1.5], [5, -1]]
X, y = make_blobs(n_samples=1000, centers=centers, random_state=40)
transformation = [[0.4, 0.2], [-0.4, 1.2]]
X = np.dot(X, transformation)
for multi_class in ("multinomial", "ovr"):
clf = LogisticRegression(solver="sag", max_iter=100, random_state=42)
if multi_class == "ovr":
clf = OneVsRestClassifier(clf)
clf.fit(X, y)
# print the training scores
print("training score : %.3f (%s)" % (clf.score(X, y), multi_class))
_, ax = plt.subplots()
DecisionBoundaryDisplay.from_estimator(
clf, X, response_method="predict", cmap=plt.cm.Paired, ax=ax
)
plt.title("Decision surface of LogisticRegression (%s)" % multi_class)
plt.axis("tight")
# Plot also the training points
colors = "bry"
for i, color in zip(clf.classes_, colors):
idx = np.where(y == i)
plt.scatter(
X[idx, 0], X[idx, 1], c=color, cmap=plt.cm.Paired, edgecolor="black", s=20
)
# Plot the three one-against-all classifiers
xmin, xmax = plt.xlim()
ymin, ymax = plt.ylim()
if multi_class == "ovr":
coef = np.concatenate([est.coef_ for est in clf.estimators_])
intercept = np.concatenate([est.intercept_ for est in clf.estimators_])
else:
coef = clf.coef_
intercept = clf.intercept_
def plot_hyperplane(c, color):
def line(x0):
return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1]
plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color)
for i, color in zip(clf.classes_, colors):
plot_hyperplane(i, color)
plt.show()
Total running time of the script: (0 minutes 0.204 seconds)
Related examples
Plot multi-class SGD on the iris dataset
Plot multi-class SGD on the iris dataset
Multiclass sparse logistic regression on 20newgroups
Multiclass sparse logistic regression on 20newgroups
SVM Tie Breaking Example
Plot classification probability
Plot classification probability